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Abstract—A model is suggested to describe the influence of overloading on the fatigue crack
propagation process. The model includes three factors that can affect significantly the crack growth
rate : the increasing of the material resistance to crack growth due to the crack tip blunting: the’
residual stress field in the process zone affecting the threshold of microdamage accumulation ; the
change of microstructural properties close to the new-blunted crack tip that changes the initial
conditions of the microdamage accumulation process. It is shown that the joint account of two or
three listed factors adequately explains the crack growth retardation due to overloading.

1. INTRODUCTION

Depending on the level of cyclic stresses, on the contribution of plastic deformations and on
the total cycle number until the final fatigue fracture, two kinds of fatigue are distinguished :
classical (high-cycle) fatigue and low-cycle fatigue. Although each fatigue crack appears to
be a very strong stress concentrator producing plastic deformations near the tip, most
fatigue phenomena can be described in the framework of the linear fracture mechanics, i.e.
considering a cracked body as linear elastic until the final fracture, with the only difference
that microdamage near the crack tips is to be taken into account as well as its influence on
the material properties (in the first line—on the specific work of fracture). Such an approach
was developed by Bolotin (1983, 1985, 1989, 1990).

If the level of loading is comparatively high, plastic deformations and accompanying
effects cannot be neglected. In particular, plastic deformations are to be taken into account
to describe the effects of overloading on the crack growth rate and the total fatigue life. In
fact, most of the factors involved in this phenomena are characteristic for the low-cycle
fatigue. In this paper we try to develop an analytical approach to describe the overloading
effects. This approach is based on the well-known thin plastic zone model by Leonov—
Panasyuk—Dugdale (Liebowitz, 1968 ; Hutchinson, 1979 ; Pluvinage, 1989). Bolotin (1987)
complemented this model with the microdamage accumulation process affecting the charac-
teristic parameters of the material and developed a model of the low-cycle fatigue crack
growth.

According to the theory of fatigue crack growth, a cracked body under loading is
considered as a mechanical system with unilateral (due to the irreversibility of cracks)
constraints. Two groups of generalized coordinates are introduced: the conventional,
Lagrangian coordinates describing the displacement field in the body and the generalized
coordinates that were named by Bolotin (1983, 1989), in honor of Griffith, Griffithian
coordinates. The latters are needed to describe the position, shape and size of cracks and
crack-like defects. Later on, for brevity we say of L- and G-coordinates, respectively. For
simplification only quasistatic loading and quasistatic crack behavior will be considered.
Under these conditions the response of a cracked body to loading can be analyzed in the
framework of the principle of virtual work for systems with unilateral constraints.

Let all the G-coordinates a,, . . ., @,, be chosen in such a way that their variations satisfy
conditions

ou; 20, j=1,...,m. )
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The principle of virtual work can be written as

where 0,4 and ;4 are the amounts of virtual work produced on L- and G-variations,
respectively. If in every time moment the system is in equilibrium with respect to L-
coordinates, and all constraints put on L-coordinates are bilateral, eqn (2) takes the form

oA < 0. (3)

Depending on the properties of the virtual work 6,4, the states of a cracked body
under loading can be classified as follows. A state of the system is named a sub-equilibrium
state if 654 < 0 for all admissible da, > 0. If 6,4 = 0 with respect to a part of G-coordinates
and d;4 < 0 for all the remaining coordinates, the state is named an equilibrium state (with
respect to the mentioned part of coordinates). The equilibrium states can be stable, unstable
or neutral depending on the property of the following terms in the development of the
virtual work into series with respect to da. At last, a state of the system is named a
non-equilibrium state when at least one G-variation exists such that ;4 > 0. The non-
equilibrium states are, evidently, unstable.

With the application to a single-parameter crack with the G-coordinate a, the virtual
work d;A4 can be presented in the form

ScA = Gda—Téa, C))

where G is the active (driving) generalized force. In simple situations, for example, in the
framework of the linear fracture mechanics, G-coordinate coincides with one of the well-
known generalized forces, say, with the Irwin’s strain energy release rate. In the same case,
I has the meaning of the critical magnitude of the strain energy release rate.

For fatigue cracks, the generalized forces G and I' depend not only on characteristic
loads and crack dimensions, but also on the parameters characterizing microdamage at the
crack tip. A fatigue crack does not propagate if

G<T, )
and grows in a stable way, without jumps, if

oG _or

=T =
G ' 8a  éa

(6)

If the second of conditions (6) is not fulfilled, it means that the crack propagates in a
jump-like way, going from one sub-equilibrium (stable) state to the neighboring sub-
equilibrium state. The sizes of jumps can be estimated from the energy balance consider-
ations. However, since the sizes of jumps are small and the jump-like character of crack
propagation is smoothed significantly due to the material local nonhomogeneities, one
might assume that a crack grows almost continuously under the condition

G~T. (N

To close the set of equations governing the fatigue crack growth, one needs a model
of microdamage accumulation along the crack trajectory, as well as a relationship between
the generalized forces and microdamage parameters. Some of these equations can be
substantiated with the use of experimental data, other ones might be considered as ad hoc
hypotheses. Anyway, different assumptions are to be introduced for high-cycle and low-
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Fig. 1. Schematic presentation of the transition (a) from the high-cycle fatigue, (b) to the low-cycle
fatigue, (c) and vice versa.

cycle fatigue cracks. Since the effects of overloading on the fatigue crack growth are born
from plastic straining and related residual stresses, the joint consideration of high-cycle and
low-cycle fatigue is needed to describe these effects. The transition from one type of fatigue
to another is illustrated schematically in Fig. 1 where blunting of an initially sharp high-
cycle fatigue crack due to plastic deformation and the following return to the high-cycle
fatigue is shown.

2. MODEL OF HIGH-CYCLE FATIGUE

Consider an opening mode planar crack in the plain stress conditions (Fig. 2). The
length of the crack is 2a, and applied (remote) stress is ¢, (¢). Treating the cycle number N
as a continuous variable, assume that the fatigue crack growth is governed by extremal
magnitudes of ¢, () during a loading cycle, or by its maximal magnitude denoted simply
0, (N) and the range within a cycle Ao, (N). Along with the applied stress, the “true”
opening stresses o,.(x,N) distributed at |x| >a, y =0 are of interest. Their maximal
magnitudes during a cycle and the range are denoted ¢,(x, N) and Ac,(x, N), respectively.

Let microdamage at |x| > a, y = 0 be described with the scalar measure w(x, N) with
magnitudes from the segment [0, 1]. At w = 0 the material is nondamaged and at w = 1 is
completely damaged. Evidently, such a measure is similar to that introduced for creep
damage by Rabotnov (1979) and Kachanov (1986). A rather universal model of micro-
damage accumulation is given with the equation

dw
cN

= f(Aag,.7) ®)

which right-hand side depends on the opening stress ratio r = ¢ /a7**. Note the difference

y
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Fig. 2. Opening mode fatigue planar crack.
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Fig. 3. Fatigue crack in a polycrystalline material and its schematization as an elliptical slit.

between r and the conventional stress ratio R = ¢ /a'7** of extremal applied stresses within
a cycle. Equation (8) can be specified as follows (Bolotin, 1983):

ow Ac,—Aagy\"
={——] . 9
cN ( o ) ®

)

The parameters o,,, Ao, and m characterize the resistance of the material to microdamage
accumulation. Among them the characteristic stress o, is of the order of magnitude of the
“real” ultimate stress in tension, Aoy, is a threshold resistance stress that could depend on
the local stress ratio r and, therefore, could take into account the crack closure and related
phenomena. The exponent m is similar to the exponent entering in fatigue curves and
fatigue crack growth rate diagrams and sometimes may coincide with those exponents. All
the parameters, o,,, Ao, and m, generally depend on temperature and other environmental
conditions. If ¢, < Agy,, the right-hand side in eqn (9) must be put to zero.

Both the driving generalized force G and the resistance generalized force I' that enter
eqns (5)—(7), generally, depend on w(x, N). For example, due to microdamage, the elastic
moduli change in the vicinity of the crack tip resulting in the change of stress-strain field
that, in its turn, affects the microdamage distribution near the tip (Bolotin and Kovekh,
1993). A more significant effect is the decreasing of the fracture toughness due to mic-
rodamage at the tip. This effect can be taken into account assuming that

I=T,(1—¢%. (10)

Here I'y is the generalized resistance force (namely, the specific fracture work) for the
nondamaged material, ¥ (N) is the microdamage measure at the tip, i.e.

Y(N) = wla(N), N]. (11)

and the exponent « > 0, say, a = 1 (Bolotin, 1983).

To evaluate microdamage at the tip, we must reject from the common schematization
of cracks as mathematical cuts. In fact, if a material is assumed linear elastic, the common
model of linear fracture mechanics results in singularities of opening stresses at the crack
tips. To avoid singularities, we treat fatigue cracks as narrow slits with finite curvature radii
at the tip. A typical schematization is an elliptical slit with the larger semi-axis « and the
tip curvature radius p < a. It does not mean at all that a crack has a smooth face surface.
Moreover, the radius p or, precisely, the ratio p/a is just a measure of stress concentration
near the tip of the crack that may have a rather complicated fractographic picture (Fig. 3).

In the earlier publications (Bolotin 1983, 1985) the effective tip radius was considered
as a material parameter. Later this viewpoint was changed to take into account the tip
blunting and sharpening during the crack growth. A crack blunts on overloading and
sharpens when we return to the regular high-cycle fatigue (Fig. 1). Under other equal
conditions, a crack sharpens at the stage of accelerated crack propagation and blunts when
the microdamage accumulation process becomes a dominating phenomenon. To take into
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account both tendencies, the simple differential equation with respect to p(N) can be used
such as:

Cp _pi=pda a

Here p, is the “sharp” effective tip radius, p, is the “blunt” effective tip radius and 4, is a
parameter with the dimension of length that characterizes the influence of crack growth
rate da/dN on the sharpening process. The second term in the right-hand side of eqn (12)
takes into account the tip blunting due to microdamage accumulation at the tip.

Assumption of the finite curvature at the tip allows one to introduce the bounded
stress distribution along all the crack trajectory. If a crack length is small compared
with the width of the specimen, the solution of the standard problem of elasticity theory
(Timoshenko and Goodier, 1970) results in the following opening tensile stresses o,(x, N)
at x| = a,y=0:

Aﬁ_ﬁ:_,_ (1—g)? &P 43E7 +e(E2—1)
g, E—g 2 (@—e
: = (x/a) +{(x/a)’ = (1 —m)] '
1452
a—b 0 b?
= == = 13
e= g M= PE, (13)

Equation (13) may also be used as an approximation for a bounded width. Then we ought
to interpret ¢., as the nominal stress in the cross section, at y = 0. At x = a eqn (13) results
in Neuber’s equation for the maximal opening stress

6,(a) = [1 +2<2)1}; (14)

Returning to eqns (5)-(7), we use the linear fracture mechanics equation for the driving
generalized force, i.e.

G="x (15)

with Young’s modulus £ and stress intensity factor K. Equation (15) means that the
influence of microdamage on Young’s modulus and the resulting redistribution of stresses
around the tip may be neglected (Bolotin and Kovekh, 1993). Under certain ad hoc
assumptions, eqns (7) and (9)—(14) can be reduced to an ordinary differential equation with
respect to a(N) which includes all three phases of crack propagation: the initial growth
near the threshold, the Paris—Erdogan phase and the final accelerated growth till the final
rupture (Bolotin, 1983, 1985, 1989).

3. MODEL OF LOW-CYCLE FATIGUE

The simplest model of nonlinear fracture mechanics is a model of planar crack in the
linear elastic material with a thin tip plastic zone where the opening stress g, is given. The
latter is of the order of magnitude of the yield limit and in some cases coincides with it.
Therefore, the problem of plasticity theory is reduced to a problem of elasticity theory with
the stresses given on the crack faces |x| <« and on the borders of the plastic zones
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Fig. 4. Comparison of various approaches to evaluation of the generalized driving force: (1) linear
elastic model, (2) J-integral; (3) present analysis.

a £ |x| € a+ A. The size 4 of the plastic zone is given with the equation (Liebowitz, 1968 ;
Parton and Morozov, 1985 ; Pluvinage, 1989 ; Wnuk, 1990) :

A= a|:sec (’w—*)— 1], (16)
20,

where o, is the applied (remote) tensile stress. The crack tip opening displacement is

80,a o,
0= <F In [sec(zao >:| an
Application of the common J-integral technique leads to the equation
J= 005 = 309, [ e (M= (18)
=00 ="+ ec 200 |

However, the J-integral cannot be considered as a generalized force in this problem. In
fact, the product Joa is not (opposite to the elastic case) a component of the virtual work.
Using the general approach, we define the driving generalized force through the virtual
work 6,4, of external and 6,4, of internal forces:

def O A, + 0 A,
G = 9gAc ¥ 06 A
da

It means, compared with the J-integral technique, that the variation of the plastic zone
length is also taken into account. Using eqns (16) and (17) we obtain

8aia no,.\ mo, (7o,
G _—E[lncos (—27())%— Eo—tg (200 )] 19)

The right-hand side coincides with the magnitude of **specific fracture work™ estimated
for the Leonov—Panasyuk—Dugdale model (Parton and Morozov, 1985). o

The comparison of results delivered with eqns (15), (18) and (19) is presented ih‘F.ig.
4 (lines 1, 2 and 3, respectively). There, all G are normalized to G, = 8c{a/(nE). At
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Fig. 5. Generalized resistance force as function of @ —«, at three increasing applied stress levels 1, 2, 3.

a,/0.. < 1 the discrepancy between the lines is small. But it could become significant in the
area of low-cycle fatigue when o, is of the order of g,.

The generalized resistance force I' depends not only on the microdamage measure
but also on the crack tip displacement 9 :

=T, f(0.9). (20)

Here Ty is the resistance force for the nondamaged material. As to the function f{(d,
), there is not sufficient information on it. When ¢ = 0, the force T, evidently, is similar
to the resistance to ductile fracture usually associated with the so-called R-curve. According
to widespread opinion, the force R plotted against the crack size a or its increment a—a,
enters as a kind of a universal characteristic of the material resistance to ductile fracture.
It is more sensible to assume that the resistance force R depends both on the size ¢ and on
the applied stress o, For example, one may consider it dependent on the crack tip opening
displacement J. Since, according to eqn (17), displacement § is proportional to the crack
size, the new assumption does not contradict the common interpretation of R-curves. But
0 depend on o, too (see Fig. 5 where lines 1, 2, 3 are drawn for three increasing applied
stress levels). At sufficiently small ¢ /g, eqn (17) results in

. 2nela
0= Eoq 21
It means that not only the crack size, but also the level of applied stresses is responsible
for the magnitude of the resistance force. Since G is growing with ¢ approximately in the
same way as I', the o, -dependence is not so significant in the general balance of forces.
In this paper we assume that the tip opening displacement and microdamage at the tip
interact as follows:

_ f
r=r, [1 + (5757') (1 —l/ﬂ)} (22)
ia

Here J,, 04, o, and are materials parameters that, generally, depend on the interior
structure of the cycle, say, on r = a7 /o7, If & < d,, instead of eqn (22) we have to use
eqn (10). The inequality é < J,, means that the plastic deformations at the tip stop playing
the dominant role and only the influence of microdamage is to be taken into account. The
following calculations include the solution of eqn (7) with account of eqns (19) and (22).
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Fig. 6. Illustration to the computational procedure (explanation in the text).

The computational procedure is illustrated in Fig. 6 where the generalized forces G
and I are plotted against the crack size a at various cycle numbers N. At N = 0, a = a,, the
inequality G' < T takes place (point 1). At N > 0 the process of microdamage accumulation
proceeds resulting in the decrease of the resistance force I'. This process terminates at
N = N, when the equality ¢ = I is primarily attained (point 2). If a plastic zone exists
near the crack tip, the attained state of equilibrium is unstable and it means a jump-like
propagation of the crack up to a,+ Aa. With the account of the microdamage accumulated
before the jump, the initial resistance force (point 4) will be less than that for the non-
damaged material (point 3). Then the process of the microdamage accumulation proceeds
again until the equality G = I is reached again (point 5). Since the jumps Aq are sufficiently
small, the jump-like propagation can be approximated with a continuous one. In compu-
tation, it seems easier to treat Aa as given increments of the crack size and to evaluate the
correspondent increments AN of the cycle number by the solution of eqn (7).

4. MICRODAMAGE WITH ACCOUNTED PLASTIC DEFORMATION

One of the central questions of the theory of the low-cycle fatigue is the choice of the
model of microdamage accumulation. In principle, two different models can be considered.
According to the first model, microdamage is produced with the cyclic stresses acting in the
plastic zone and along its propagation. The second model connects the microdamage
accumulation with the cyclic variation of strains within the plastic zone (Radon, 1990). A
number of intermediate and mixed models can be suggested too, including those taking
into account cyclic hardening and/or softening of the material, residual stress and strain
fields, etc.

As in the high-cycle fatigue, we describe microdamage with the scalar measure w(x, N)
with magnitudes from segment [0,1]. When microdamage is stress-controlled, the equation
of microdamage accumulation can be taken as similar to eqn (8). In an alternative case.
one can assume instead of eqn (8) the following equation:

-

ow .
oy =/1(Ben). (23)

Here Ae is the range of strains (complete or purely plastic) within a cycle and r may
be interpreted both as the stress or strain ratio. The choice between eqns (8) and (23) is to
be done by comparing the numerically simulated results with experimental data. The
preliminary analysis appears to be in favour of the stress-controlled model (Bolotin, 1989).
At least, this model provides the exponent of the Paris—Erdogan part of the fatigue crack
growth rate diagram rather close to two under very wide assumptions on the right-hand
side of eqn (8).
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Fig. 7. Plastic zone at the crack tip for a single loading (dashed) and cyclic loading (double dashed).

In the framework of elastoplastic fatigue problems it is necessary to take into account
the primary, i.e. corresponding to the loading half-cycle, stresses as well as secondary
stresses such as residual ones. If the material is ideal elasto-plastic with the yield stresses
+ gy, a process zone of the size /, exists, and the stress range within it is equal to 2g, (Fig.
7). The size 2, can be assessed from eqn (16) if we replace o, with 20y, and ¢, with
(63 —a7™) = 6.,.(1 —R). Here 6, = 6™ and R = 67" /¢™* is the ratio of applied stresses.

Then eqn (16) results in
- o (1 - R:c)
/Lp = a| SeC T —1 . (24)
0

In particular, at R = 0 we obtain that 4, = 4/4. The opening stress ranges at y = 0 are as
follows:

20, a<|x|{<a+/,,
Ao (x) = { 4g, alx*(a+4,) > =177 , (25)
—arcetgy— | —————— . |x] > a+ 4y,
7 XL 1—a*(a+4,) "7
and the residual stresses
( — 00, a<|x| <a+4i,,
4, alx*(a+2,) *—1]" . .
0y — —arcctg {— — , a+/.p< x| < ata,
n Xl —a'(a+i,)" "
AO’res(,\") = < 20‘0 {a I:xz (a—l-/z)fz — ]:||”2} (26)
—-arcctg (—| ——r—
n X|1—a’(a+4)?
do alx*(a+i) 2 —17"7 ,
— —arcctg {- [%’)—~;] } Ix| > a+/.
- n X|1—-a’(a+4,)""

It is assumed in eqn (26) that the mean stress (6™ +¢7™")/2 does not produce plastic
deformations but ¢7** and ¢2** — g™ do. That is typical, say, for the case R = 0. The stress
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Fig. 8. Stress distribution ahead of crack: (1) loading half-cycle; (2) reverse loading; (3) residual
stresses.

distribution ahead of the crack is illustrated in Fig. 8 where line 1 corresponds to the
loading half-cycle, line 2 to the unloading with the range ¢7** — 2™ and line 3 to residual
stresses. ‘

In the further analysis, we use eqn (9) with material parameters ¢, Ao, m that,
generally differ from the corresponding parameters of the high-cycle fatigue model. In
particular, the threshold resistance stress Ao, depends strongly on the residual stress ..
The simplest assumption is

O = Ao-toh _ko-rcsa (27)

where k is an empirical constant. At o, < 0 eqn (27) describes the increase of the threshold
or, that is the same, the decrease of the effective stress range due to compression in the tip
zone. Other parameters of eqn (9), generally, also depend on a,,.

One of the questions arising in connection with the suggested models is the condition
of transition from the high-cycle to the low-cycle fatigue and vice versa. It is obvious that
eqn (19) transfers continuously into eqn (15) with decreasing of the applied stress level.
Similarly, eqn (22) allows a continuous transition to eqn (10). As to eqns (13) and (295),
(26) that describe the stress distribution along the prolongation of the crack, they are, from
the analytical viewpoint, incompatible. A pragmatic way to find a bridge between them is
to choose such a small zone of the plastic zone /. that at lesser 4 we turn from the eqns (25),
(26) to eqn (13) or to its equivalent. Actually, let p ~ 4 where /. is evaluated from eqn (16)
as

2 2
, _Tmosa

s .
8a;

(28)

Then the elastic tip stress ¢,(a) defined with eqn (14) is of the order of g,:

1.2 4 6
o.(a) = 20, G) ~ Y ay.

s

There are several parameters in the model of fatigue crack growth with the dimension
of length. The most suitable candidate for the border length is the “blunt” effective tip
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radius p, from eqn (12). Later on, we assume that at 4 > p, the high-cycle fatigue model
and at 4 > p, the low-cycle fatigue model is to be used.

5. HIGH-CYCLE FATIGUE WITH SINGLE OVERLOADINGS

Consider a regular cyclic loading interrupted with single overloadings (Fig. 8). Let the
regular loading correspond to the high-cycle fatigue, but overloadings produce significant
plastic deformations with the tip zone /2 > p,. During the cycle of overloading we apply the
thin plastic zone model. The length of the tip zones are given in eqns (16) and (24), the
stress range in eqn (25) and the residual stresses in eqn (26). We assume that the generalized
resistance force is given in eqn (22). Moreover, we assume that along the whole plastic zone
the resistance to crack growth is governed with the equation similar to eqn (22)

2V—5th ¢
r= ro[l + (T) (1 —w“)}. (29)

]

Here the double plastic displacement 2v(x, N) ata < x < a+ 4, y = 10 and the micro-
damage measure w(x, N) ahead of the crack are introduced instead of § and , respectively.
The displacement v(x) is defined with the equation (Wnuk, 1990)

(a+ o, sin?(f—0) (sin B +sin 6)*
s _— - - 7 1 - @
v =""F [COS(G} R Ny s 0)2]’
x no.,
f = arccos (Fi)’ B = 200 (30)

Together with eqn (27), the introduced assumptions take into account all the principal
mechanisms entering into overloading phenomena : the increasing of the material resistance
to crack growth due to the crack tip blunting and plastic deformations within the tip zone,
the residual stresses on the prolongation of the crack affecting the lower threshold of
microdamage accumulation. The last mechanism is illustrated in Fig. 9. There the variation
of the opening tensile stresses o,(a, N) at the moving crack tip are shown. Being stationary
under regular cyclic loading, the opening tensile stress changes significantly during the
overloading and immediately after it. After passing the tip zone with residual compressive
stresses, the recovering of the stresses takes place until the next overloading.

The computation program is rather cumbersome and, in some details, sophisticated
since it contains multiple switchings from one loading process to another. Some numerical
results for a central crack are presented in Figs 10-14. The following input data are used.
The loading process during the regular stage is taken with Ao, =5 MPa, R=0. At
overloadings we assume that Ag, = 50 MPa, R = 0. Material parameters in the high-cycle
fatigue are: £ =200 GPa, I, =15kl m™2 6,=5 GPa, A6, =0.5GPa, m=2, a =1,
ps = 50 um, p, = A, = 100 um. During the elasto-plastic stage the material parameters are:
gy, = 500 MPa, d, =20 um, 6, =0, § = 0.5, k = 0.15. The width of the sheet is b = 500
mm, the initial crack half-length a, = 30 mm and the initial tip radius p, = 0.3 mm.

In Fig. 10 the crack size a is plotted against the cycle number N. Line 1 shows the
crack growth under the regular loading (Ao, = 5 MPa). Line 2 corresponds to a single
overloading after N = 2.5 x 10 cycles with the subsequent return to the regular process.
Line 3 is obtained for the case of two overloadings, at N = 2.5x 10° and N = 5 x 10°. The
general pattern and the order of magnitude of the retardation stage are in agreement with
experimental data (see, e.g. Cullen and Broek, 1987).

The crack growth rate da/dN after the retardation recovers practically to the same
magnitude as before overloading (Fig. 11). The following figures show how the effective
tip radius p (Fig. 12) and microdamage measure at the tip y (Fig. 13) vary during the crack
propagation. Both the tip blunting and sharpening phenomena can be observed there. The
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Fig. 9. Regular high-cycle fatigue loading with single overloadings and corresponding opening
stresses.

blunting takes place when the crack is stationary or the propagation is relatively slowly.
The sharpening is typical for the final stage when the effective tip radius tends to its ““sharp”
magnitude p,. The tip microdamage measure y increases almost till the upper bound ¢y = 1
when the crack propagates regularly and approaches the level accumulated in the far field
at the final stage of crack growth.

The conventional crack growth rate diagram is shown in Fig. 14. Here the rate da/dN
is plotted in the log-log scale against the range AK of the stress intensity factor K. Lines 1,
2, 3 are of the same meaning as in Fig. 10, The discontinuities correspond to the overloadings
at N =12.5-10°and N = 5-10°. Both the threshold of crack growth and the acceleration

200

150

a, mm

100

50

5
N-10
Fig. 10. Fatigue crack growth under : (1) regular loading ; (2) a single overloading at N = 2.5 x 10°;
(3) two overloadings at N = 2.5x 10 and N = 5x 10°.
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Fig. 11. Fatigue crack growth rate under: (1) regular loading; (2) a single overloading at
N =2.5x%10%; (3) two overloadings at N = 2.5x 10° and N = 5 x 10°.

300
200 |
E
=3
a
100 |- e ,
1 2 |3
S
0 5 10
-6
N-10

Fig. 12. Effective tip radius under: (1) regular loading; (2) a single overloading at N = 2.5x 10°;
(3) two overloadings at N = 2.5x 10® and N = 5 x 10°.
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Fig. 13. Microdamage measure at the crack tip under: (1) regular loading; (2) a single overloading
at N = 2.5x 10%; (3) two overloadings at N = 2.5x 10°and N = 5 x 10°.
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Fig. 14. Fatigue growth rate vs the range of stress intensity factor: (1) regular loading; (2) single
overloading ; (3) two overloadings.

during the final stage can be observed in Fig. 14 and this is in agreement with the general
theory (Bolotin, 1989). After each retardation, the crack growth rate returns practically to
the same magnitude, and the further paths of lines are nondistinguishable. It ought to be
stressed that Fig. 14, as well as the preceding Figs 10-13, are plotted for the case of the
identical initial crack size, ¢, = 30 mm. When the initial size of the crack is subjected to
variation, a scattering of the crack growth rate lines takes place even under purely deter-
ministic numerical data and regular loading (Bolotin ez al., 1994).
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